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On the sum of the reciprocals of k-generalized
Fibonacci numbers
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Abstract

In this note, we that if {F,(lk)}nzo denotes the k-generalized Fi-
bonacci sequence then for n > 2 the closest integer to the reciprocal
of 32, o 1/F is B — F

1 The problem and the result

There are many papers in the literature which address the integer part of
the reciprocal of the sum ) . 1/U,,, where {U,},>1 is a binary recurrent
sequence of positive integers. For example, the case of the Fibonacci sequence
was treated by Ohstuka and Nakamura [4], the case of the Pell sequence was
treated by Zhang and Wang [5], and the more general case of Lucas sequences
of characteristic equation 22 — az — 1 with an integer a > 1 (which includes
the particular case of the Fibonacci sequence for ¢ = 1 and Pell sequence for
a = 2) was treated in [3]. Letting {U, },>0 be this last Lucas sequence given
by Up =0, Uy =1 and Upq2 = aUpy1 + U, for all n > 0, one of the main
results of [3] is that for n > 1
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m>n

where §,, = 0 if n is even and §,, = 1 if n is odd.
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Here, for an integer £ > 2, we prove a result of the same flavour for
the kth order recurrent sequence {Fék)}nz,(k,g) given by Fi(k) =0 for i =
—(k—2), —(k=3), ..., 0Oand F® =1 and

F® =F® 4. 4 F®  forall n>2

This sequence coincides with the Fibonacci sequence for k£ = 2. For any real
number x let |x] be the closest integer to x (when z is at distance 1/2 from
an integer we can pick for || to be anyone of |z] or |z| + 1). Our theorem
is the following.

Theorem 1. For k > 2 and n > 2, we have
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1 k (k)
Z F(k) :F’I’E)_anl' (1)

m>n
Many sequences naturally arising in nature and engineering are modelled
by {F,(Lk)}nzo for some k > 2. For a fixed k, as a linearly recurrent sequence,

F,gk) has a Binet formula. It turns out that this Binet formula has one term
corresponding to the dominant root (see the next section for formal defini-

tions), and then Fﬁk) is the closest integer to this term. Let €, be the error
of this approximation (formally, this also depends on &k but we will omit the
dependence on k in order not to clutter the exposition). The proof is then
achieved by approximating the left—hand side of (1) with a natural candidate
arising from the sum of the reciprocals of a certain geometric progression and
relating the error of this approximation to |e,| and |, —&,—1|. Then the proof
is completed by giving good upper bounds on |e,,| and |, — €,,—1]. The proof
uses some ideas from [2].

2 Preliminary results on k-generalized Fibonacci num-
bers

It is known that the characteristic polynomial of the k—generalized Fibonacci

numbers F(¥) .= (Fﬁnk))ng_k, namely

Up(z)=af -1 - —x—1,

has just one root outside the unit circle. Let « := «(k) denote that single root,
which is located between 2 (1 —27%) and 2 (see [2]). To simplify notation, in
our application we shall omit the dependence on k of a. We shall use g, . . ., oy
for all roots of Uy (x) with the convention that a; := a.
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We now consider for an integer k£ > 2, the function

z—1
T2+ (k+1)(z—2)

fr(2) for  zeC. (2)

With this notation, Dresden and Du presented in [2] the following “Binet-like”
formula for the terms of F():

k
Féf) = ka(ai)aim_l. (3)
i=1

It was proved in [2] that the contribution of the roots which are inside the unit
circle to the formula (3) is very small, namely that the approximation

1
E® — fk(a)amfl‘ <3 holds for all m >2—k. (4)

It was proved by Bravo and Luca in [1] that
am? < F,(,f) <Ml holds for all m>1 and k>2. (5)

The root « is called the dominant root of {F,(f)}mz_(k_g). It is also known,
and it will be useful for us, that

F) = 9n=2 folds for all n e [2,k+ 1],

whereas F,gﬁ_)Q =9k _1.

Before we conclude this section, we present one more some useful lemma
which was proved by Bravo and Luca in [1].

Lemma 1. Let k > 2, a be the dominant oot of {Fff)}mz,(k,g), and con-
sider the function fi(z) defined in (2). Then

% < fila) < %

3 Two Lemmas

We put &, := F,, — fr(a)a™ ! for n > —(k — 2). As we mentioned in Section
2, in [2] the following result was proved.

Lemma 2. We have |e,,| < 1/2 for alln > —(k — 2).
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This lemma was proved in the following way. First it was checked that it
folds for n € [—(k —2),1], an interval containing k consecutive integers. Then
since

n
En = Z fk(ai)a?a
=2

where gy, ..., ay are all the other roots of ¥y (X) which are complex numbers
inside the unit circle, it follows that €, — 0 as n — oo. Using the recurrence
relation

En+l = 25n —En—k
valid for all n > 2, it was then shown that the fact that |e,| < 1/2 for
n € [—(k — 2),1] implies that |e,| < 1/2 for all n > —(k — 2). Here is a slight
generalisation of that result.

Lemma 3. Let Ny > —(k — 2) be an integer, and {0, }n>nN, be a sequence of
real numbers whose Binet formula is given by

k
On = Zcia;’ forall  n> No. (6)
i=2
Assume that there are ng > Ny and \ such that |6,] < A holds for all n €

[no,mo + k — 1]. Then |6,| < A holds for all n > ny.

Proof. Formula (6) shows that d,, tends to 0 as n tends to infinity. Also, the
same formula shows that

Opi1 =20, —0,_p  holdsforall n>Ny+k (7)

since recurrence (7) is a consequence of the Binet formula (6). Assume that
there is ny > ng such that |d,,,| > A and let n; be minimal with this property.
Clearly, ny > ng + k. Then the recurrence (7) in n = n; gives

§n1+1 = 26711 - 5711—k

and shows that [0y, 41| > 2|0n, | — |0ny—k| = |0n, |- By the same argument, we
then get that |0y, 42| > |0n,+1]- This pattern continues by the same argument,
so we get |Op 1| > |0] for all n > ny, which contradicts the fact that ¢, tends
to 0. Thus, |6,| < A must always hold whenever n > ny. O

4 The proof modulo two estimates

The first part of the proof consists of evaluating the sum of a geometric series
and keeping track of the errors of approximation. Since Fl(k) = Q(k) =1 and
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F7(,,k) < 2772 holds for all n > 2 and the inequality is strict for n > k+ 1, we

have that 1 1
2= Z 2m72 < Z

-
m>2 m>2 FT(L )

This shows that .

> om] <3
k b
mZQF"(n) 2

therefore formula (1) holds for n = 2 (both its sides are 0). From now on, we
assume that n > 3. We recall

ER = fi(a)a™ 4 e, for m > —(k—2),
where |e,,| < 1/2 for all m > —(k — 2) by Lemma 2. We also put

Ap 1= max lem]-

We then have

1 1 1 1
> > Fr(@)am=1 2 (Fw - fk<a>am1>

k
m>n Fr(n) m>n k m>n
1 1 1
= e [ S+ T = T,
fe(a)an—1 ;0 W | fe(@)an=1(1 —1/a) +
We estimate |T},|. We have, using estimate (5),
Sr(@)a™ ! —Fr(f) €m
Tl = ® | 2 o ®
m>n fk(a)am_lFm m>n fk(Oé)Oé"L_lFm
|em| 1
< ——= <\, -
mzzn fk(a)am—le(f) mXZ:n fk(a)am—ngf)
1 A 1
mzz:n Frla)a2m=3 ~ fi(a)a?n—3 = 027
An
< B .
~ fr(a)a?r3(1 —1/a?)
Thus,
1 1
Z (1 + 77n) )

F® T ful@)arI(1 - 1/a)
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where
An

a"2(1+1/a) (8)

Since k > 2, a > (1 4+ \/5)/2 > 1.6 and n > 3, we have that " 2(a + 1) > 4
so the above upper bound is at most 1/8. Thus,

11| = | Tl fu(@)a" 71 (1~ 1/a) <

-1

> | = @ = ) )

m>n

We use
<1+77n)_1:1_77n+771%_"'a

which is valid on our range for ,,. Putting ¢, := (1 +n,)~! — 1, we have, by
(8), that

‘Cnl = |77n‘|1_77n+77721_"'|
< | ‘ 1+ # + )\—" ’ R
= 21+ 1/a)) " a2+ 1)
— |71n| < )\n
1= (@214 1/a)) T an2(1+1/a) — A,
Hence,
-1
S ] = Rle)a™ = fla)a™ + (fla)a™ (1= 1/a)G)
m>n - m
= F,r(tk) _F'rs,li)l _5n+5n71+6n, (9)
where
16, = [fr(@)a™ (1 =1/a)(,| < fi(a)a" (1 = 1/a)

a"2(1+1/a) = A\,
fe(a)(a— 1)\, - 3An
1+ 1/a— N, an—2 5

The last inequality holds because fi(a) < 3/4 (by Lemma 1), « — 1 < 1,
therefore

fr(a)(a—1) < 3/4,

while

T+ 1/a— A /@™ 2> 14+ (1= N\,)/a>1+1/(2a) > 5/4,
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where we used the fact that n > 3 and A, < 1/2. Assume that

3N, 1
n — &n— = o 10
len — €n—1] + 5 <3 (10)
Then
3N, 1
| —€&ntéEn-1 +5n| < |5n - 6n—1| + |6n| < ‘€n - 5n—1| + ? < 57
so, by estimate (9), we get

-1

1
- — g _ pk)
Z F,%) Fn anl'

m>n

This finishes the proof of the theorem modulo proving the following lemma.

Lemllla 4- jhe estlmates
)\”71 < anc |E - 1| < ( )
:;.2 " " " 3.2

hold for allm > 3 and k > 3.

Note that if (11) holds, then since A, < A,—1, we have that

Y PRSI W A
Fn T En—1 T TR S e T Sl 5 32 5) 2

so (11) implies (10) and therefore the conclusion of the theorem for n.

5 The proof of the estimates: Lemma 4

Let us start with k = 2. In this case, a = (1 ++/5)/2, and ¢, = —"/V/5,

where 8 = —a ! is the conjugate of a.. Thus, for n > 2, we have
1 1 1
en| = < <018 < —.
fenl Vham ~ /5a? 3.2
Furthermore, for n > 3, we have
18" (1 - B) 1 1 1
En — En_1| = = < <028 < —.
| 1 V5 V5an-2 = \/5a 3.2

From now on, we assume that k > 3. For what follows, we will need a slightly
better approximation of o than the mere fact that a € (2(1 — 1/2%),2).
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Lemma 5. We have

1 Cl

27k - 22167;2, where Cr € (O, k)

a=2—

Proof. We check that the above estimate holds for k = 2,3. For k > 4, we
note that o satisfies the equation

b —1 okt —20F 41

Ozakfakflf...flzakf =
a—1 a—1
Thus,
9 1
a=2— —.
ok

Now a = 2(1 — ¢/2*%), where ¢ € (0,1). Thus,

1 c\ " 1 ¢
a:2—2k(1—2k> :2—2kexp<—klog<1—2k)>.

Using that for 2 € (0,1/2) we have log(1 — ) = —y for some y € (0, 2z), we
get that —log(1 — ¢(/2%) = n, where n € (0,1/2%~1). Thus, kn € (0,k/28"1)
and k/2F~1 < 1/2 for k > 4. Using that expy = 1 + z for some z € (0,2y) if
y € (0,1/2), we have that

exp(—klog(1 — ¢/2%)) = exp(kn) = 1+ 6, where 5 € (0,k/2872).

Thus, writing & := ¢;,/28~2, we have that ¢; € (0,k) and

1 Ck; 1 Ck
a=2- g (14 5i55) =1 5~ g

which is what we wanted. O

In order to prove that (11) holds in the ranges indicated by Lemma 4 it
suffices, by Lemma 3 with d,, :== &, or 6, := €, —€p,—1, A :=1/3.2 and ng := 3,
to show that inequality (11) holds for the first & values of the ranges indicated
in (1) and (2) of Lemma 4. Let’s get to work.

Lemma 6. We have forn € 2,k + 1],

_ n—k
= 9kt3-n

(1 5e55) + Ones with [0l < <5

k4 1)2 EO\?
En ck (—’—)<1+2 .
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Proof. We use the fact that for n € |2,k + 1], we have for
Grn(2) = fr(2)2" 1, that Gen(2) =2""2=F®),
Thus,

en = F" = gin(@) = 91,0(2) = ghin (@) = 94,0(2)(2 — @) — %gk’,n(C)(a - 2)?

(13)
for some ¢ € («,2), a formula which is obtained by applying the Taylor formula
to the expansion of gj ,(z) around z = 2. Now

gk,n(z) = 2+(k+1)(z—2) B 2—|—(k+1)(2—2),
/ (Z) = nz"1 o (n71)2n72
Ik.n 2+(k+1)(z—2) 2+(k+1)(2_2)
- (k+1)z" N (k+1)z""" . (14)

2+ k+1D)(2=-2)2 Q24+ (k+1)(z—2))2
Evaluating the above in n = 2, we get

Gem(2) = 02" = (n—-1)2""% — (k4+1)2"7% + (k+ 1)2"
2" 302n —(n—1)=2(k+1)+k+1)=(n—k)2" >

Thus,

(n —k)2n=3 Ck n—k Ck
G2 —0) = T (14 25 ) = o (1 505) - (19)

This is the main term. For the next term, we take again the derivative of g}wl
given by formula (14). This formula consists in 8 fractions and we evaluate
them in ¢ € (@,2). The largest numerator is (k+1)2¢" < (k+1)%-¢**+1. Since
a—2>—1/2k"1 the denominator is at least

k+1
24 (k+1)(a—2) 22—2,% >1  for k>3
Hence,
9K (O] < 8(k + 12 < (k +1)2",
Since ) )
2 _ Ck
-2 (1052
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by Lemma 5, we get that

(k 4 1)22k+4 cr \2 (k+1)2 E\?
[0 k| < 92k +1 (1 + 2k72) ~ T 9k-3 L+ ok—2 | - (16)
The proof follows from (13), (15) and (16). O

Proof of Lemma 4. For n = k, the main term in 0 in (12). For n = k—1, the
fraction [n—k|/23+* =" evaluates to 1/16. Forn < k—2, putting z := k—n > 1,
the fraction |n — k|/23T*~" equals 2/237%, a function which is decreasing for
x > 2, so its maximal value is at x = 2 and equals again 1/16. The worst
case scenario for n € 2,k + 1] is therefore in n = k + 1, for which the fraction
|n — k|/2377~F evaluates to 1/4. We thus get that for n € [2,k + 1], we have

that
1 k (k+1)2 E\?
len| < 6 (1 + 2k_2) + = 1+ = for n €2k,

1 k (k+ 1) k2

lept1] < 1 1+ k2 + k3 1+ k2 .
The right-hand sides above are < 1/3.2 for k > 20. In particular, we have
that |e,| < 1/3.2 for all n € [2,k+ 1] if £ > 20, and by Lemma 3, |&,,| < 1/3.2

for all n > 2.
We now consider

and

Opi=é€p—€n—1 for ne[3k+2].

By the above arguments, for n € [3, k], we have that

1 k (k+1)2 k2
10n] < len] + len-1] < 3 <1 + 2k2> + = 1+ = (17)
For n =k + 1, we have

1 k k+1)2 o\’
‘6k+1| = |5k+1 — E}C‘ < 1 (1 + 2k2> + ( S (1 =+ 2k2> R (18)

where we used the fact that at n = k the main term of ¢, in (12) equals 0.
For n = k 4 2, we have

Ekt2 = 26541 — €1,
SO
Ekt2 — Ek41| = |Er41 — €1
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Now

Ck
€kl = (1 + 2’“7*2) + Ok k1

1 =

while

a1 =1-fi(a) = 1= (fu(2)+ fi(O(a—2)) = %—fé(()(a—% for ¢ € (a,2).

Clearly,
/ 2+ k+DC-2) - (k+ (¢ -1)
|fk(€)| - 2+(k+1)(<—2))2
B k-1 L
RN CES (=) A
Thus,
[0k+2] = [Cog1 — G
S Tt s el + RO - )

1k (k+1)? kO k-1 k
< Z+27+(2k73) <1+2k2> + <1+2H>. (19)
For k > 20, all right-hand sides of (17), (18) and (19) are < 1/3.2. Thus,
len —en—1] < 1/3.2 holds for all n € [3,k + 2], a interval of length k. By
Lemma 3, it holds for all n > 3.

A computer program now checked that |e,| < 1/3.2 also holds for all
k € [3,19] and all n € [2,k + 1]. For this, we just computed

272 — fu(a)a" " forall ke[3,19] and ne(2,k+1].

In fact, the maximum value of |, | in this range was less than 0.24996 < 1/3.2.
Similarly, we checked that |e,, — €,-1] < 1/3.2 holds for all n € [3,k + 2] and
all k£ € [3,19]. The way we did it was to compute, for all n € [3,k + 1], the
amount

e — £notl = 2972 = 2978 — fy(a)(a — 1)a""2],

and to check that it is < 1/3.2 in this range. When n = k + 2, the term
27=2 _ 973 = 273 must be replaced by 273 — 1 because for this n, we have

F,(lk) = 2772 — 1. The maximal value of |¢,, —&,_1| in this range was less than
0.261 < 1/3.2.
The theorem is proved.
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